| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8959490 | Journal of Number Theory | 2018 | 22 Pages |
Abstract
Let A be an abelian variety defined over a global function field F of positive characteristic p and let K/F be a p-adic Lie extension with Galois group G. We provide a formula for the (truncated) Euler characteristic Ï(G,SelA(K)p) of the p-part of the Selmer group of A over K. In the special case GâZpd and A a constant ordinary variety, using Akashi series, we show how the Euler characteristic of the dual of SelA(K)p is related to special values of a p-adic L-function.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Andrea Bandini, Maria Valentino,
