Article ID Journal Published Year Pages File Type
89596 Forest Ecology and Management 2008 10 Pages PDF
Abstract

We estimated the potential of plantation forests for the restoration of the original plant community. We compared the understory vegetation in hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantations at the understory re-initiation stage and in adjacent natural forests. To estimate the effect of the original natural forests on the understory species composition of plantation forests, we established study sites in five types of natural forests (mature evergreen broadleaf, mature deciduous broadleaf, mature evergreen coniferous, immature deciduous broadleaf warm-temperate, and immature deciduous broadleaf cool-temperate) and nearby plantation forests. The understory vegetation of the plantation forests had a higher species richness, a higher proportion of early-seral species, and a higher proportion of herb or fern species than the natural forests. The differences between natural and plantation forests varied according to the species composition of the natural forests. The composition of the understory vegetation of the plantations at the understory re-initiation stage was similar to that of the immature deciduous forests. The characteristics of immature, disturbed forests remained in the understory vegetation of the hinoki forests. No great loss of species was observed. Our findings suggest that most of the original forest species still survive in the understory of the plantation forests. These forests have the potential to follow the successional pathway to broadleaf or mixed forests via thinning or clear-cutting without planting.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,