Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9142879 | Molecular Phylogenetics and Evolution | 2005 | 14 Pages |
Abstract
We analyze the phylogeny of three genera of Australasian elapid snakes (Acanthophis-death adders; Oxyuranus-taipans; Pseudechis-blacksnakes), using parsimony, maximum likelihood, and Bayesian analysis of sequences of the mitochondrial cytochrome b and ND4 genes. In Acanthophis and Pseudechis, we find evidence of multiple trans-Torresian sister-group relationships. Analyses of the timing of cladogenic events suggest crossings of the Torres Strait on several occasions between the late Miocene and the Pleistocene. These results support a hypothesis of repeated land connections between Australia and New Guinea in the late Cenozoic. Additionally, our results reveal undocumented genetic diversity in Acanthophis and Pseudechis, supporting the existence of more species than previously believed, and provide a phylogenetic framework for a reinterpretation of the systematics of these genera. In contrast, our Oxyuranus scutellatus samples from Queensland and two localities in New Guinea share a single haplotype, suggesting very recent (late Pleistocene) genetic exchange between New Guinean and Australian populations.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Wolfgang Wüster, Alex J. Dumbrell, Chris Hay, Catharine E. Pook, David J. Williams, Bryan Grieg Fry,