Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9143153 | Molecular Phylogenetics and Evolution | 2005 | 10 Pages |
Abstract
We characterize the type of selection acting within and among mitochondrial lineages in five closely related Drosophila species. We focus on D. simulans, where three genetically distinct mitochondrial haplogroups show high interhaplogroup divergence and low intrahaplogroup polymorphism. Using maximum likelihood models we find that the branches leading to these three distinct mitochondrial groups show a significantly reduced rate of nonsynonymous relative to synonymous substitution. This interhaplogroup rate is significantly reduced compared to the intrahaplogroup rate, and closely resembles the rate observed between distinct species. The data suggest that slightly deleterious mutations segregating within D. simulans haplogroups are removed by selection prior to their fixation among haplogroups. We explore several hypotheses to explain how lineages within a single species can be compatible with this model of slightly deleterious mutation. The most likely hypothesis is that D. simulans haplogroups have persisted in isolation, perhaps due to association with the bacterial symbiont Wolbachia and/or demographic history, introducing a bias against the fixation of slightly deleterious mutations.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Matthew D. Dean, J. William O. Ballard,