Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9148985 | Journal of Thermal Biology | 2005 | 9 Pages |
Abstract
We used eggs of Deinagkistrodon acutus to study the effects of incubation temperature on hatching success, embryonic expenditure of energy and hatchling phenotypes. One egg from each of the 15 fertile clutches was dissected for determination of egg composition, and a total of 164 eggs were incubated at five constant temperatures. Embryonic mortality increased dramatically at 30 °C, and none of eggs incubated at 32 °C hatched. Within the range from 24 to 30 °C, temperature affected incubation length and most hatchling traits examined. The mean incubation length at 24, 26, 28 and 30 °C was 36.4, 28.7, 21.8 and 15.7 days, respectively. Embryos developing at higher temperatures (28 and 30 °C) consumed more energy but produced less developed (and hence smaller) hatchlings, which characteristically had larger residual yolks but smaller carcasses. A principal component analysis resolved two components (with eigenvalues ⩾1) from ten size (initial egg mass)-free hatchling variables, accounting for 79.3% of variation in the original data. The first component (43.8% variance explained) had high positive loading for size-free values of dry mass, lipid mass, energy contents and ash mass of hatchlings, and the second component (35.5% variance explained) had high positive loading for size-free values of SVL, carcass dry mass and fatbody dry mass. Hatchlings from different incubation temperatures did not differ in scores on the first axis of the principal component analysis, whereas hatchlings from higher incubation temperatures (28 and 30 °C) had significantly lower scores on the second axis than did those from lower incubation temperatures (24 and 26 °C). As the second axis mainly represents traits relating to the developmental condition at hatching, the analysis therefore provided further evidence that eggs incubated at higher temperatures produced less developed hatchlings. Taken together, our data show that the optimal temperatures for embryonic development are relatively low in D. acutus largely due to its use of relatively cool habitats.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Zhi-Hua Lin, Xiang Ji, Lai-Gao Luo, Xiao-Mei Ma,