Article ID Journal Published Year Pages File Type
9445891 Biological Conservation 2005 10 Pages PDF
Abstract
The red kite (Milvus milvus) occurs in a relatively small area in the southwestern Palearctic region, with population strongholds in Central Europe. Following strong human persecutions at the beginning of the 20th century, populations have receded, particularly in peripheral areas and islands. In order to describe and compare levels of genetic diversity and phylogeographic patterns throughout its entire distribution in Europe, sequence variation of a 357 bps part of the mitochondrial DNA control region was assessed in eight populations and 105 individuals. Overall, results indicate that population declines have affected red kite mtDNA variation. We found low levels of genetic diversity (values of nucleotide diversity ranging from 0 in Majorca island to 0.0062 in Central Europe), with only 10 distinct haplotypes, separated by low levels of genetic divergence (mean sequence divergence = 0.75%). Highest haplotype and nucleotide diversities match with demographic expectations, and were found in Central European and Central Spanish samples, where present strongholds occur, and lowest values in the declining southern Spanish and insular samples. Φst estimates indicated moderate gene flow between populations. Phylogeographic patterns and mismatch distributions analyses suggest central European regions may have been colonized from southern glacial refugia (in the Italian or Iberian peninsulas). Interspecific phylogenetic comparisons and divergence date estimates indicated the genetic split between the red kite and its closely related species, the black kite (Milvus migrans), might be relatively recent. The low level of genetic variation found in the red kite mitochondrial control region, compared to the black kite, is likely the result of relatively recent divergence (associated with founder events), successive bottlenecks and small population sizes. As there are several ongoing projects aimed at reinforcing populations in countries such as the United Kingdom, Italy or Spain, our results may prove useful for the genetic management of the species.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,