Article ID Journal Published Year Pages File Type
9448879 Journal of Experimental Marine Biology and Ecology 2005 10 Pages PDF
Abstract
The cephalopod digestive gland plays an important role in the efficient assimilation of nutrients and therefore the fast growth of the animal. The histological and enzymatic structure of Euprymna tasmanica was studied and used in this experiment to determine the dynamics of the gland in response to feeding. The major roles of the digestive gland were secretion of digestive enzymes in spherical inclusions (boules) and excretion of metabolic wastes in brown body vacuoles. High levels of trypsin, chymotrypsin and α-amylase, low levels of α-glucosidase and negligible carboxypeptidase activity were produced by the gland. There was no evidence of secretion of digestive enzymes in other organs of the digestive tract. Within 60 min of a feeding event, the gland produced increasing numbers of boules to replace those lost from the stomach during the feeding event. Initially, small boules were seen in the digestive cells, they increased in size until they are released into the lumen of the gland where they are transported to the stomach. There was no evidence of an increase in activity of digestive enzymes following a feeding event, despite structural changes in the gland. However, there was large variation among individuals in the level of digestive enzyme activity. A negative correlation between boule and brown body vacuole density suggested that the large variation in enzyme activity may be due to the digestive gland alternating between enzyme production and excretion.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,