Article ID Journal Published Year Pages File Type
9469584 Journal of Theoretical Biology 2005 13 Pages PDF
Abstract
The interpretation of normal and pathological electrocardiographic (ECG) patterns in terms of the underlying cellular and tissue electrophysiology is rudimentary, as the existing theories rely on geometrical aspects. We relate effects of sub-endocardial ischaemia on the ST-segment depression in ECG to patterns of transmural action potential propagation in a one-dimensional virtual ventricular wall. Our computational study exposes two electrophysiological mechanisms of ST depression: dynamic-predominantly positive spatial gradients in the membrane potential during abnormal repolarization of the wall, produced by action potential duration changes in the ischaemic region; and static-a negative spatial gradient of the resting membrane potential between the normal and ischaemic regions. Hyperkalaemia is the major contributor to both these mechanisms at the cellular level. These results complement simulations of the effects of cardiac geometry on the ECG, and dissect spatio-temporal and cellular electrophysiological mechanisms of ST depression seen in sub-endocardial ischaemia.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,