Article ID Journal Published Year Pages File Type
9473524 Field Crops Research 2005 17 Pages PDF
Abstract
The addition of Striga-free control plots facilitated the calculation of the relative yield loss, which represents the result of resistance and tolerance combined. Correlation analysis indirectly demonstrated that both resistance and tolerance are important yield determining traits under Striga infestation. Tolerance was relatively more important under low Striga infestation levels, whereas resistance was relatively more important at high infestation levels. With respect to resistance, both the area under the Striga number progress curve (ASNPC) and maximum above-ground Striga number (NSmax) turned out to be discriminative and consistent selection measures. Both measures also corresponded well with the expression of resistance during below-ground stages of the parasite. It proved more difficult to arrive at a satisfactory measure for tolerance. Inclusion of Striga-free plots is an essential step for the determination of tolerance, but in itself not sufficient. It provides a basis for the determination of the relative yield loss, which then needs to be corrected for differences in infection level resulting from genotypic differences in resistance. A linear correction for infection level disregards the density dependency of the relative yield loss function. It is expected that clarification of the relation between Striga infection level and yield loss, provides a solid basis for the development of unambiguous tolerance measures in the field. This will enable the breeder to select for resistance and tolerance separately, which is likely to result in the optimum combination of both defence mechanisms.
Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , ,