Article ID Journal Published Year Pages File Type
9653615 Neurocomputing 2005 17 Pages PDF
Abstract
Artificial neural networks (ANN), have shown to be an effective, general-purpose approach for pattern recognition, classification, clustering, and prediction. Traditional research in this area uses a network with a sequential iterative learning process based on the feed-forward, back-propagation algorithm. In this paper, we introduce a model that uses a different architecture compared to the traditional neural network, to capture and forecast nonlinear processes. This approach utilizes the entire observed data set simultaneously and collectively to estimate the parameters of the model. To assess the effectiveness of this method, we have applied it to a marketing data set and a standard benchmark from ANN literature (Wolf's sunspot activity data set). The results show that this approach performs well when compared with traditional models and established research.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,