Article ID Journal Published Year Pages File Type
9669557 Computer Vision and Image Understanding 2005 38 Pages PDF
Abstract
Visual motion analysis has focused on decomposing image sequences into their component features. There has been little success at re-combining those features into moving objects. Here, a novel model of attentive visual motion processing is presented that addresses both decomposition of the signal into constituent features as well as the re-combination, or binding, of those features into wholes. A new feed-forward motion-processing pyramid is presented motivated by the neurobiology of primate motion processes. On this structure the Selective Tuning (ST) model for visual attention is demonstrated. There are three main contributions: (1) a new feed-forward motion processing hierarchy, the first to include a multi-level decomposition with local spatial derivatives of velocity; (2) examples of how ST operates on this hierarchy to attend to motion and to localize and label motion patterns; and (3) a new solution to the feature binding problem sufficient for grouping motion features into coherent object motion. Binding is accomplished using a top-down selection mechanism that does not depend on a single location-based saliency representation.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , , ,