Article ID Journal Published Year Pages File Type
9884710 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2005 5 Pages PDF
Abstract
We have critically reexamined methods for deconvoluting cytochrome f absorbance signals in intact leaves. We have determined the decay of cytochrome f+ following light to dark transitions from steady state and compared this with the decay of the oxidised photosystem I primary donor, P700+. Measurements across a wide range of different irradiances and CO2 concentrations were all consistent with cyt f and P700 existing in redox equilibrium, with a potential difference of around 117 mV. These results are discussed in relation to our understanding of the organisation of the photosynthetic electron transport. They also have implications for measurements of PSI electron flux-provided more than about 20% of P700+ is oxidised in the light, then the initial decay in the concentration of P700+ following a light to dark transition provides a good estimate of electron flux through PSI. Where P700 is largely reduced in the light, net reduction of cyt f+ might need to be corrected for.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , ,