Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10151138 | Neurocomputing | 2018 | 28 Pages |
Abstract
When diagnosing Parkinson's disease (PD), medical specialists normally assess several clinical manifestations of the PD patient and rate a severity level according to established criteria. This rating process is highly depended by doctors' expertise, which is subjective and inefficient. In this paper, we propose a machine learning based method to automatically rate the PD severity from gait information, in particular, the sequential data of Vertical Ground Reaction Force (VGRF) recorded by foot sensors. We developed a two-channel model that combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) to learn the spatio-temporal patterns behind the gait data. The model was trained and tested on three public VGRF datasets. Our proposed method outperforms existing ones in terms of prediction accuracy of PD severity levels. We believe the quantitative evaluation provided by our method will benefit clinical diagnosis of Parkinson's disease.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Aite Zhao, Lin Qi, Jie Li, Junyu Dong, Hui Yu,