Article ID Journal Published Year Pages File Type
10971831 Fish & Shellfish Immunology 2015 37 Pages PDF
Abstract
In the present study, KGM was degraded by H2O2 and HCl to obtain two products with different molecular weights: oxidized konjac glucomannan (OKGM, 4.7 × 105 Da) and low-molecular-weight oxidized konjac glucomannan (L-OKGM, 9.2 × 103 Da). The effects of the two OKGM products on IL-1β, TNF-α, and TLR22 gene expression, and immune parameters and the resistance to Aeromonas hydrophila of Schizothorax prenanti were determined. The results showed that the lysozyme activity was significantly enhanced by the L-OKGM diets. The SOD activity was significantly increased by both OKGM and L-OKGM diets. The MDA level of fish fed the OKGM and L-OKGM diets was significantly lower than the control group. IL-1β mRNA level in the spleen significantly increased in all L-OKGM fed groups. The 8.0 g kg−1 L-OKGM diet also significantly up-regulated IL-1β gene expression in the head kidney. In the gut, IL-1β mRNA levels were significantly higher in fish fed with the 8.0 g kg−1 OKGM and 16.0 g kg−1 L-OKGM diets. The TNF-α mRNA level of L-OKGM group significantly increased in the spleen, head kidney and gut. High dosing of OKGM significantly up-regulated TNF-α transcription in the head kidney, while only the 8.0 g kg−1 OKGM group showed significantly higher TNF-α mRNA expression in the mesonephros. Fish fed the L-OKGM diets showed significantly higher expression of TLR22 in the spleen, head kidney and mesonephros. After the injection of A. hydrophila, the 8.0 g kg−1 L-OKGM group showed a significantly higher survival rate than did the control group. Present study suggests that OKGM and L-OKGM can up-regulate immune-related gene expression and enhance disease resistance in S. prenanti, and L-OKGM exhibits higher immunomodulatory activity.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , , , , ,