Article ID Journal Published Year Pages File Type
1254110 Chinese Chemical Letters 2014 4 Pages PDF
Abstract

Li4Ti5O12 was synthesized by a facile gel-combustion method (GCM) with polyvinylpyrrolidone (PVP) as the polymer chelating agent and fuel. The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction (SSR) through X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), charge–discharge measurements, and electrochemical impedance spectroscopy (EIS), respectively. The sub-microscale Li4Ti5O12 oxides, with a high phase purity and good stoichiometry, can be obtained by annealing at 800 °C. The grain size is smaller than that of the samples that were power prepared by SSR. Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6, 160.7, 152.9, and 144.2 mAh/g, at the current densities of 0.5 C, 1 C, 3 C and 5 C, respectively. The excellent cycling and rate performance can be attributed to the smaller particle size, lower charge-transfer resistance and larger lithium ion diffusion coefficient. It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in high-rate lithium ion batteries.

Graphical abstractLi4Ti5O12 was synthesized by a facile gel-combustion method (GCM) with polyvinylpyrrolidone (PVP) as the polymer chelating agent and the fuel lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6, 160.7, 152.9, and 144.2 mAh/g, at the current densities of 0.5 C, 1 C, 3 C and 5 C, respectively. The excellent cycling and rate performance can be attributed to the smaller particle size, lower charge-transfer resistance and larger lithium ion diffusion coefficient. It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in high-rate lithium ion batteries.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , , ,