Article ID Journal Published Year Pages File Type
1289629 Journal of Power Sources 2011 4 Pages PDF
Abstract

Considering that conventional lanthanum chromate (LaCrO3) interconnector is hard to be co-sintered with green anode, we have fabricated a novel bilayered interconnector which consists of La-doped SrTiO3 (Sr0.6La0.4TiO3) and Sr-doped lanthanum manganite (La0.8Sr0.2MnO3). Sr0.6La0.4TiO3 is conductive and stable in reducing atmosphere, locating on the anode side; while La0.8Sr0.2MnO3 is on the cathode side. A slurry-brushing and co-sintering method is applied: the Sr0.6La0.4TiO3 and La0.8Sr0.2MnO3 slurries are successively brushed onto green anode specimen, followed by co-firing course to form a dense bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector. For operating with humidified hydrogen and oxygen at 900 °C, the ohmic resistances between anode and cathode/interconnector are 0.33 Ω cm2 and 0.186 Ω cm2, respectively. The maximum power density is 290 mW cm−2 for a cell with interconnector, and 420 mW cm−2 for a cell without it, which demonstrates that nearly 70% of the power output can be achieved using this bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,