Article ID Journal Published Year Pages File Type
2039222 Cell Reports 2015 12 Pages PDF
Abstract

•Zygotic TRIM28 is essential for imprinting control at many imprinted genes•Loss of maternal and zygotic TRIM28 leads to fully penetrant loss of imprinting•TRIM28 maintains germline imprints exclusively during genome-wide reprogramming•Conditional Trim28 mutants show hypomethylation at secondary DMRs

SummaryGenomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , ,