Article ID Journal Published Year Pages File Type
2039240 Cell Reports 2016 13 Pages PDF
Abstract

•Lipidomic analysis reveals lipid usage during early development•Several lipids increase in concentration in the yolk sac during development•Inhibition of PPARγ activity changes lipid profile during zebrafish embryogenesis•Lipids are actively processed in the yolk during embryogenesis

SummaryThe role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC)-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY) lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , ,