Article ID Journal Published Year Pages File Type
2039287 Cell Reports 2016 11 Pages PDF
Abstract

•Recoverin binds rhodopsin kinase by conformational selection•NMR and stopped flow kinetics reveal binding mechanism•Direct experimental distinction between conformational selection versus induced fit•Binding-competent state with exposed hydrophobic binding pocket is only 3% populated

SummaryMolecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here, we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using nuclear magnetic resonance (NMR) spectroscopy, stopped-flow kinetics, and isothermal titration calorimetry, we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , ,