Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2039557 | Cell Reports | 2016 | 16 Pages |
•Dietary fiber with vitamin A increases the potency of tolerogenic CD103+ DCs•High-fiber diet protects mice against peanut allergy via gut microbiota and SCFA•High-fiber effects rely on epithelial GPR43 and immune cell GPR109a•Dietary fiber promotes TFH and IgA responses
SummaryThe incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103+ dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103+ DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103+ DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens.
Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide