Article ID Journal Published Year Pages File Type
2039643 Cell Reports 2014 14 Pages PDF
Abstract

•Macrophages activate osteoblastic NF-κB, resulting in osteopenia and HSC/P egress•Autophagic p62 negatively regulates osteoblastic NF-κB activation at several levels•Nbr1 deficiency rescues the bone and HSC/P egress associated to p62 deficiency

SummaryIn the bone marrow (BM), hematopoietic progenitors (HPs) reside in specific anatomical niches near osteoblasts (Obs), macrophages (MΦs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-κB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression, and HP chemotaxis toward Cxcl12, resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by deficiency of the p62 PB1-binding partner Nbr1. A functional “MΦ-Ob niche” is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-κB signaling repression, osteogenesis, and BM progenitor retention.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , , , , , , ,