Article ID Journal Published Year Pages File Type
2040310 Cell Reports 2015 17 Pages PDF
Abstract

•GRK2 ablation alters light-induced entrainment and delays recovery from jetlag•GRK2 ablation increases circadian amplitude and decreases circadian period•GRK2 suppresses mPeriod1 transcription and PERIOD1/2 nuclear trafficking•GRK2 physically binds to PERIOD1/2 and promotes PERIOD2 phosphorylation

SummaryThe pacemaker properties of the suprachiasmatic nucleus (SCN) circadian clock are shaped by mechanisms that influence the expression and behavior of clock proteins. Here, we reveal that G-protein-coupled receptor kinase 2 (GRK2) modulates the period, amplitude, and entrainment characteristics of the SCN. Grk2-deficient mice show phase-dependent alterations in light-induced entrainment, slower recovery from jetlag, and longer behavioral rhythms. Grk2 ablation perturbs intrinsic rhythmic properties of the SCN, increasing amplitude and decreasing period. At the cellular level, GRK2 suppresses the transcription of the mPeriod1 gene and the trafficking of PERIOD1 and PERIOD2 proteins to the nucleus. Moreover, GRK2 can physically interact with PERIOD1/2 and promote PERIOD2 phosphorylation at Ser545, effects that may underlie its ability to regulate PERIOD1/2 trafficking. Together, our findings identify GRK2 as an important modulator of circadian clock speed, amplitude, and entrainment by controlling PERIOD at the transcriptional and post-translational levels.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , ,