Article ID Journal Published Year Pages File Type
2040653 Cell Reports 2015 10 Pages PDF
Abstract

•vSUB controls the phasic activity of VTA dopamine neurons•The BNST relays the excitatory drive from the vSUB to VTA dopamine neurons•vSUB stimulation promotes persistent hyperactivity of VTA dopamine neurons•vSUB-driven NMDA-LTP in the BNST gates cocaine-induced locomotor activity

SummaryThe ventral subiculum (vSUB) plays a key role in addiction, and identifying the neuronal circuits and synaptic mechanisms by which vSUB alters the excitability of dopamine neurons is a necessary step to understand the motor changes induced by cocaine. Here, we report that high-frequency stimulation of the vSUB (HFSvSUB) over-activates ventral tegmental area (VTA) dopamine neurons in vivo and triggers long-lasting modifications of synaptic transmission measured ex vivo. This potentiation is caused by NMDA-dependent plastic changes occurring in the bed nucleus of the stria terminalis (BNST). Finally, we report that the modification of the BNST-VTA neural circuits induced by HFSvSUB potentiates locomotor activity induced by a sub-threshold dose of cocaine. Our findings unravel a neuronal circuit encoding behavioral effects of cocaine in rats and highlight the importance of adaptive modifications in the BNST, a structure that influences motivated behavior as well as maladaptive behaviors associated with addiction.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , , , ,