Article ID Journal Published Year Pages File Type
2041379 Cell Reports 2015 13 Pages PDF
Abstract

•Direct visualization of chromosome movements is seen in live mouse seminiferous tubules•Quantitative analysis revealed characteristics and regulation of RPMs•SUN1/KASH5 connects telomere to dynein on cytoskeletal microtubules to generate RPMs

SummaryTelomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using 4D fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks that are apparently continuous with the cytoskeletal network and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein, but not actin, were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , ,