Article ID Journal Published Year Pages File Type
2041845 Cell Reports 2015 10 Pages PDF
Abstract

•USP15 deficiency renders mice more sensitive to MCA-induced fibrosarcoma•USP15-deficient T cells promote MCA-induced primary tumor formation•T cell-derived IFN-γ induces an immunosuppressive tumor microenvironment•Targeting PD-L1 or CXCL12 reduces MCA-induced tumorigenesis in USP15-deficient mice

SummaryUSP15 is a deubiquitinase that negatively regulates activation of naive CD4+ T cells and generation of IFN-γ-producing T helper 1 (Th1) cells. USP15 deficiency in mice promotes antitumor T cell responses in a transplantable cancer model; however, it has remained unclear how deregulated T cell activation impacts primary tumor development during the prolonged interplay between tumors and the immune system. Here, we find that the USP15-deficient mice are hypersensitive to methylcholantrene (MCA)-induced fibrosarcomas. Excessive IFN-γ production in USP15-deficient mice promotes expression of the immunosuppressive molecule PD-L1 and the chemokine CXCL12, causing accumulation of T-bet+ regulatory T cells and CD11b+Gr-1+ myeloid-derived suppressor cells at tumor site. Mixed bone marrow adoptive transfer studies further reveals a T cell-intrinsic role for USP15 in regulating IFN-γ production and tumor development. These findings suggest that T cell intrinsic USP15 deficiency causes excessive production of IFN-γ, which promotes an immunosuppressive tumor microenvironment during MCA-induced primary tumorigenesis.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , ,