Article ID Journal Published Year Pages File Type
2042089 Cell Reports 2013 8 Pages PDF
Abstract

SummarySignaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases) in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1) found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote) development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► SHLP1 has phosphatase activity insensitive to phosphoprotein phosphatase inhibitors ► SHLP1 deletion results in reduced ookinete and microneme development ► SHLP1 is contributed by the female gamete ► SHLP1 deletion results in oocyst ablation and is critical for parasite transmission

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , , ,