Article ID Journal Published Year Pages File Type
2042393 Cell Reports 2014 10 Pages PDF
Abstract

•Small molecules enable cardiac reprogramming with Oct4•Induced cardiomyocytes pass through the cardiac progenitor stage•Induced cardiomyocytes exhibit cardiac-specific features and spontaneously beat•Most induced cardiomyocytes are ventricular-like cells

SummaryIt was recently shown that mouse fibroblasts could be reprogrammed into cells of a cardiac fate by forced expression of multiple transcription factors and microRNAs. For ultimate application of such a reprogramming strategy for cell-based therapy or in vivo cardiac regeneration, reducing or eliminating the genetic manipulations by small molecules would be highly desirable. Here, we report the identification of a defined small-molecule cocktail that enables the highly efficient conversion of mouse fibroblasts into cardiac cells with only one transcription factor, Oct4, without any evidence of entrance into the pluripotent state. Small-molecule-induced cardiomyocytes spontaneously contract and exhibit a ventricular phenotype. Furthermore, these induced cardiomyocytes pass through a cardiac progenitor stage. This study lays the foundation for future pharmacological reprogramming approaches and provides a small-molecule condition for investigation of the mechanisms underlying the cardiac reprogramming process.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , , , ,