Article ID Journal Published Year Pages File Type
407577 Neurocomputing 2013 8 Pages PDF
Abstract

The Cerebellar Model Articulation Controller (CMAC) possesses attractive properties of fast learning and simple computation. In application, the size of its association vector is always reduced to economize the memory requirement, greatly constraining its modeling capability. The kernel CMAC (KMAC), which provides an interpretation for the traditional CMAC from the kernel viewpoint, not only strengthens the modeling capability without increasing its complexity, but reinforces its generalization with the help of a regularization term. However, the KCMAC suffers from the problem of selecting its hyperparameter. In this paper, the Bayesian Ying–Yang (BYY) learning theory is incorporated into KCMAC, referred to as KCMAC-BYY, to optimize the hyperparameter. The proposed KCMAC-BYY achieves the systematic tuning of the hyperparameter, further improving the performance in modeling and generalization. The experimental results on some benchmark datasets show the prior performance of the proposed KCMAC-BYY to the existing representative techniques.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,