Article ID Journal Published Year Pages File Type
409641 Neurocomputing 2015 9 Pages PDF
Abstract

This work is concerned with the delay-dependentstability problem for recurrent neural networks with time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear matrix inequalities is derived by constructing a dedicated Lyapunov–Krasovskii functional via utilizing Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent stability criterion is established by means of a new partitioning method for bounding conditions on the activation function and certain new activation function conditions presented. Finally, the application of these novel results to an illustrative example from the literature has been investigated and their effectiveness is shown via comparison with the existing recent ones.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,