Article ID Journal Published Year Pages File Type
411746 Neurocomputing 2015 10 Pages PDF
Abstract

Most existing multi-target tracking (MTT) algorithms are based on Kalman filters (KFs). However, KFs exhibit poor estimation performance or even diverge when system models have parameter uncertainties. To overcome this drawback, finite impulse response (FIR) filters have been studied; these are more robust against model uncertainty than KFs. In this paper, we propose a novel MTT algorithm based on FIR filtering for Markov jump linear systems (MJLSs). The proposed algorithm is called the multi-target FIR tracking algorithm (MTFTA). The MTFTA is based on the decision-making process to identify the true-target׳s state among candidate states. The true-target decision-making process utilizes the likelihood function and the Mahalanobis distance. We show that the proposed MTFTA exhibits better robustness against model parameter uncertainties than the conventional KF-based algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,