Article ID Journal Published Year Pages File Type
412971 Neurocomputing 2009 11 Pages PDF
Abstract

There are two problems preventing the further development of extreme learning machine (ELM). First, the ill-conditioning of hidden layer output matrix reduces the stability of ELM. Second, the complexity of singular value decomposition (SVD) for computing Moore–Penrose generalized inverse limits the learning speed of ELM. For these two problems, this paper proposes the partial Lanczos ELM (PL-ELM) which employs the hybrid of partial Lanczos bidiagonalization and SVD to compute output weights. Experimental results indicate that, compared with ELM, PL-ELM not only effectively improves the stability and generalization performance but also raises the learning speed.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,