Article ID Journal Published Year Pages File Type
4502773 Theoretical Population Biology 2009 13 Pages PDF
Abstract

Structured coalescent processes are derived for the finite island model under a migration mechanism that conserves the subpopulation sizes. The underlying population model is a modified Moran model in which the reproducing individual can have very many offspring with some probability. Convergence to a structured coalescent process results when assuming that migration follows a coalescent timescale which can be much shorter than the usual Wright–Fisher timescale. Three different limit processes are possible depending on the coalescent timescale, two of which allow multiple mergers of ancestral lines. The expected time to most recent common ancestor, and the expected total size of the genealogy, of balanced and unbalanced samples can be very similar, even when migration is low, if the coalescent process allows multiple mergers. The expected total size increases almost linearly with sample size in some cases. The results have implications for inference about genetic population structure.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
,