Article ID Journal Published Year Pages File Type
4946949 Neurocomputing 2017 8 Pages PDF
Abstract
In this paper, we focus on developing adaptive optimal regulators for a class of continuous-time nonlinear dynamical systems through an improved neural learning mechanism. The main objective lies in that establishing an additional stabilizing term to reinforce the traditional training process of the critic neural network, so that to reduce the requirement with respect to the initial stabilizing control, and therefore, bring in an obvious convenience to the adaptive-critic-based learning control implementation. It is exhibited that by employing the novel updating rule, the adaptive optimal control law can be obtained with an excellent approximation property. The closed-loop system is constructed and its stability issue is handled by considering the improved learning criterion. Experimental simulations are also conducted to verify the efficient performance of the present design method, especially the major role that the stabilizing term performed.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,