Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4947078 | Neurocomputing | 2017 | 12 Pages |
Abstract
Many real-world applications are characterized by multiple conflicting objectives. In such problems optimality is replaced by Pareto optimality and the goal is to find the Pareto frontier, a set of solutions representing different compromises among the objectives. Despite recent advances in multi-objective optimization, achieving an accurate representation of the Pareto frontier is still an important challenge. Building on recent advances in reinforcement learning and multi-objective policy search, we present two novel manifold-based algorithms to solve multi-objective Markov decision processes. These algorithms combine episodic exploration strategies and importance sampling to efficiently learn a manifold in the policy parameter space such that its image in the objective space accurately approximates the Pareto frontier. We show that episode-based approaches and importance sampling can lead to significantly better results in the context of multi-objective reinforcement learning. Evaluated on three multi-objective problems, our algorithms outperform state-of-the-art methods both in terms of quality of the learned Pareto frontier and sample efficiency.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
S. Parisi, M. Pirotta, J. Peters,