Article ID Journal Published Year Pages File Type
4947080 Neurocomputing 2017 37 Pages PDF
Abstract
For reinforcement learning tasks with multiple objectives, it may be advantageous to learn stochastic or non-stationary policies. This paper investigates two novel algorithms for learning non-stationary policies which produce Pareto-optimal behaviour (w-steering and Q-steering), by extending prior work based on the concept of geometric steering. Empirical results demonstrate that both new algorithms offer substantial performance improvements over stationary deterministic policies, while Q-steering significantly outperforms w-steering when the agent has no information about recurrent states within the environment. It is further demonstrated that Q-steering can be used interactively by providing a human decision-maker with a visualisation of the Pareto front and allowing them to adjust the agent's target point during learning. To demonstrate broader applicability, the use of Q-steering in combination with function approximation is also illustrated on a task involving control of local battery storage for a residential solar power system.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , ,