Article ID Journal Published Year Pages File Type
4970649 Integration, the VLSI Journal 2017 16 Pages PDF
Abstract
Non-volatile memory-based FPGAs (NV-FPGAs) are expected to replace traditional SRAM-based FPGAs to achieve higher scalability and lower power consumption. Yet the slow write performance of NVMs not only challenges FPGA reconfiguration speed and overhead but also constrains the programming cycles of FPGAs. To efficiently configure switch boxes, the majority component of an FPGA, this paper presents a routing path reuse technique. The reconfiguration cost of routing resources is first modeled mathematically and then minimized through a reuse-aware routing algorithm, which is incorporated into the standard VTR CAD tool. Experiments on standard MCNC and Titan benchmarks show that the proposed scheme is able to achieve as much as 58% path reuse rate and reduce as much as 45% configuration cost for routing resources.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,