Article ID Journal Published Year Pages File Type
4970696 Integration, the VLSI Journal 2017 11 Pages PDF
Abstract
Three dimensional integrated circuits (3D ICs) can alleviate the problem of interconnection, a critical problem in the nanoscale era, and are also promising for heterogeneous integration. However, the thermal challenge in industry is one of key obstacles to adopt the 3D ICs technology. Various thermal analysis models for 3D IC have been proposed in literature. However, the long simulation cycle makes runtime of thermal management inefficient during floorplanning phase. In this paper, we propose a fast thermal analysis method for fixed-outline 3D floorplanning. Before floorplanning, we simulate the thermal distribution of each block placed on different positions. Based on the simulated thermal profiles, bilinear interpolation is adopted to quickly estimate temperature during floorplanning. After the block planning, a heuristic method, which combines the shortest path and min-cost-max-flow, is presented for TSV allocation with minimization of chip temperature and wirelength. Compared with the superposition of thermal profiles method, the proposed thermal analysis method can reduce the peak temperature by 6.7% on average with short runtime for 3D fixed-outline floorplanning, which demonstrates the efficiency and effectiveness of the proposed thermal analysis method.
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,