Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
540137 | Integration, the VLSI Journal | 2009 | 18 Pages |
This paper introduces a design technique for coarse-grained reconfigurable architectures targeting digital signal processing (DSP) applications. The design procedure is analyzed in detail and an area-time-power efficient reconfigurable kernel architecture is presented. The proposed technique inlines flexibility into custom carry-save (CS) arithmetic datapaths exploiting a stable and canonical interconnection scheme. The canonical interconnection is revealed by a transformation, called uniformity transformation, imposed on the basic architectures of CS-multipliers and CS-chain-adders/subtractors. Experimental results including quantitative and qualitative comparisons with existing reconfigurable arithmetic cores and exploration results of the proposed reconfigurable architecture are provided.