Article ID Journal Published Year Pages File Type
5540656 Fish & Shellfish Immunology 2016 7 Pages PDF
Abstract
Antimicrobial peptides (AMPs) are ubiquitously found in living organisms and are an important component in innate immune response. Tachyplesin I is a potent antimicrobial peptide isolated from the hemocytes of the horseshoe crab, Tachypleus tridentatus. Previous studies have shown that the 17-residue peptide exhibits a wide spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, protozoa, and viruses. However, the efficiencies and defense mechanisms of the Tachyplesin I against fish viruses are still unknown. In this study, Tachyplesin I showed a key role in inhibiting the infection and replication of two kinds of newly emerging marine fish viruses, an enveloped DNA virus of Singapore grouper iridovirus (SGIV), and a non-enveloped RNA virus of viral nervous necrosis virus (RGNNV). Synthetic peptides of Tachyplesin I incubated with virus or cells before infection reduced the viral infectivity. Synthetic peptides of Tachyplesin I drastically decreased SGIV and RGNNV titers and viral gene expression. Grouper spleen (GS) and brain (GB) cells over-expressing Tachyplesin I (GS/pcDNA3.1-flag-Tac I and GB/pcDNA3.1-flag-Tac I) support the inhibition of viral infection. Tachyplesin I activated type I IFN and Interferon-sensitive response element (ISRE) in vitro. The promoter activity of IFN-β and ISRE were significantly up-regulated in cells transfected with pcDNA3.1-flag-Tac I after infection with SGIV and VNNV. These results suggest that Tachyplesin I is importantly involved in host immune responses to invasion of viral pathogens.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,