Article ID Journal Published Year Pages File Type
6370541 Journal of Theoretical Biology 2014 17 Pages PDF
Abstract

•The parametric space of an acute inflammation model was analyzed using global sensitivity analysis (GSA).•GSA suggested the importance of IL-6 and NO in affecting inflammatory damage.•Increasing IL-6 leads to transition from low to high sustained damage.•At high IL-6, NO produced by macrophages can still repress overall damage.

The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the ODE model for different levels of simulated LPS challenges using a global sensitivity approach called Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient parametric Monte Carlo samples to generate the variance-based Sobol' global sensitivity indices, and found that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak representing healthy response and the higher peak representing sustained inflammation. Damage was minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6 resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the NO-mediated anti-inflammatory responses. These observations suggest that the host׳s health status during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory stimulus, on the host׳s propensity to produce IL-6, and on NO-mediated downstream responses.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,