Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6865184 | Neurocomputing | 2018 | 7 Pages |
Abstract
Due to lack of scale change in orthogonal least square regression (OLSR), the scaling term is introduced to OLSR to build up a novel orthogonal least square regression with optimal scaling (OLSR-OS) problem in this paper. In addition, the proposed OLSR-OS problem is proven to be numerically better than the OLSR problem. In order to select relevant features under the proposed OLSR-OS problem, â2, 1-norm regularization is further introduced, such that row-sparse projection is achieved. Accordingly, a novel parameterized expansion balanced feature selection (PEB-FS) method is derived based on an extension balanced counterpart. Moreover, not only the convergence of the proposed PEB-FS method is provided but the optimal scaling can be automatically achieved as well. Consequently, the effectiveness and the superiority of the proposed PEB-FS method are verified both theoretically and experimentally.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Rui Zhang, Feiping Nie, Xuelong Li,