Article ID Journal Published Year Pages File Type
8356533 Plant Science 2018 20 Pages PDF
Abstract
We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na+ influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na+ out of the cell and thus participate in the regulation of the internal contents of Na+ and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na+ followed by an efflux dependent of the activity of plasma membrane H+-ATPases, in accordance with the functioning of a Na+/H+ antiporter and the ability of some cells to repolarize. The Na+ efflux was shown to be dependent on Na+-dependent on Ca2+ influx like the SOS1 Na+/H+ antiporter. We further could observe in response to salt addition, an early production of singlet oxygen (1O2) probably due to peroxidase activities. This early 1O2 production seemed to be a prerequisite to the Na+ efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , ,