| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8498310 | Fish & Shellfish Immunology | 2018 | 49 Pages |
Abstract
Caspase-associated recruitment domain (CARD) containing proteins play critical roles in molecular interaction and regulation of various signaling pathways, such as the activation of caspase and NF-κB singling pathway in the process of apoptosis or inflammation. In the present study, a novel CARD containing protein (designed CgCARDCP-1) was identified and characterized from oyster Crassostrea gigas. Molecular feature analysis revealed that, the open reading frame (ORF) of CgCARDCP-1 gene was 759 bp encoding a polypeptide of 253 amino acids with a conserved N-terminal CARD domain and two transcriptional coactivator p15 (PC4) domains in C-terminus. Homologous alignment showed that the amino acid sequence of CgCARDCP-1 shared 30%-46% identity with that of caspase-2. By RT-PCR detection, the mRNA transcripts of CgCARDCP-1 were found to be widely distributed in various tissues of oyster with the highest expression level in hemocytes and mantle. And CgCARDCP-1 protein was mostly distributed in the cytoplasm of oyster hemocytes as shown by immunohistochemistry. Moreover, the CgCARDCP-1 mRNA expression level in hemocytes was significantly up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The recombinant CgCARDCP-1 displayed strong binding activity with LPS in vitro. In addition, after transfected into the HEK-293T cell with luciferase reporter system, CgCARDCP-1 could significantly promote the NF-κB activation (1.29-fold, pâ¯<â¯0.05) compared to that in the control group. These results collectively demonstrated that the CgCARDCP-1 might serve as a recognition molecule for LPS and a regulator of NF-κB activation in the immune response of oyster.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Aquatic Science
Authors
Feifei Wang, Zichao Yu, Weilin Wang, Yiqun Li, Guangxia Lu, Chen Qu, Hui Wang, Mengmeng Lu, Lingling Wang, Linsheng Song,
