Article ID Journal Published Year Pages File Type
8498982 Fish & Shellfish Immunology 2017 29 Pages PDF
Abstract
The stimulation of immune genes by polyinosinic:polycytidylic acid (poly (I:C)) and imiquimod in olive flounder (Paralichthys olivaceus) and their role in control of viral haemorrhagic septicaemia virus (VHSV) infection were examined. Poly (I:C) (100 μg/fish) treated olive flounder had very low mortality (5%) post VHSV infection, while the imiquimod treated group had 65% and 85% mortality at a dose of 100 μg/fish and 50 μg/fish, respectively. Though the imiquimod treated group had high mortality, it was lower than the untreated group, which had 90% mortality. In vivo experiments were conducted to determine effect of the two ligands on immune modulation in the head kidney of olive flounder. Poly (I:C) activated the immune genes (TLR-3, TLR-7, MDA-5, LGP-2, IRF-3, IRF-7, IL-1β type I IFN and Mx) very early, within 1 d post stimulation, faster and stronger than imiquimod. Though Mx levels were enhanced by imiquimod, the host was still susceptible to VHSV. The poly (I:C) treated group had a high immune response at the time of infection and 1 dpi, though it decreased at later stages. The imiquimod treated group and the unstimulated group had a higher immune response to VHSV compared to the poly (I:C) treated group. The nucleoprotein copies of VHSV were very low in the poly (I:C) treated group but interestingly, were high in both untreated and imiquimod treated fish. Thus, host survival from a viral infection does not only depend on the quantity of immune response but also the time of response. Although imiquimod enhanced immune gene expression in olive flounder, a delayed response could be the reason for high mortality to VHS compared with poly (I:C), which induced the immune system effectively and efficiently to protect the host.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,