Article ID Journal Published Year Pages File Type
10364795 Microelectronic Engineering 2005 7 Pages PDF
Abstract
We have investigated the power performance and scalability of AlGaAs/GaAs Double-Recessed Pseudomorphic High Electron Mobility Transistors (DR-PHEMTs) at 10 GHz on an unthinned GaAs substrate for CoPlanar Waveguide (CPW) circuit applications. It was found that the output power varied linearly with the logarithm of the device's gate width ranging from 200 to 1000 μm. It increased at a rate of 0.01 dB/μm. That worked out to a doubling of output power (or 3 dB) for every 300 μm increase in the gate width. Gain decreased at a rate of about 0.005 dB/μm while PAE generally improved when the gate width was increased. As for DC measurement, the maximum transconductance of the device was about 375 mS/mm at VG = −0.5 V and VDS = 3 V. The gate-drain breakdown voltage (BVGD) measured was −20 V, defined at IG = −1 mA/mm. The microwave performance of the devices was measured on-wafer using a load-pull system at a bias of VG = −0.5 V and VDS = 8 V. For a device with a gate width of 1 mm, its saturated CW output power, gain and PAE value at 10 GHz was 27.5 dBm (0.55 W), 8 dB and 48%, respectively. At this same set of bias conditions, the value of ft and fmax was 40 and 80 GHz, respectively.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,