Article ID Journal Published Year Pages File Type
2086872 Innovative Food Science & Emerging Technologies 2013 5 Pages PDF
Abstract

•We evaluate effects of cold plasma process on tomato peroxidase activity.•Time and Voltage are selected as process variables.•The kinetics of enzyme activity was modelled.•Activity decreased rapidly with treatment time.•Activity decreased with applied voltage.

Atmospheric pressure cold plasma technology is an emerging nonthermal food technology for microbiological decontamination of food and bio-materials. This study demonstrates the applicability of in-package cold plasma technology as a novel means to inactivation of enzymes. The kinetics of inactivation of tomato peroxidase as a model enzyme was studied at 30, 40 and 50 kV, for up to 5′ of atmospheric air dielectric barrier discharge plasma treatments. The enzyme activity was found to decrease with both treatment time and voltage, the former variable exhibiting a more pronounced effect. Kinetic models viz. first-order, Weibull and logistic models were fitted to the experimentally observed data to numerate the model parameters. The enzyme inactivation kinetics was found to be best described by the sigmoidal logistic function.Industrial relevanceIn-package cold plasma processing is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper provides evidence for reduction of tomato peroxidase activity using cold plasma from a dielectric barrier discharge. It also demonstrates that the sigmoidal shaped logistic model adequately describes the enzymatic inhibition. The work described in this research is relevant to the processing of fruits, vegetables and their products, wherein enzyme activity leads to quality deterioration.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , ,