Article ID Journal Published Year Pages File Type
2449911 Meat Science 2014 8 Pages PDF
Abstract

•Crosslinking was observed in AAPH oxidized porcine myofibrillar proteins.•Fragmentation was observed in AAPH oxidized porcine myofibrillar proteins.•Protein oxidation caused a dose-dependent change of viscoelastic pattern.•Moderate oxidation had positive effects on the texture and WHC of protein gel.

AAPH-derived (2,2′-azobis (2-amidinopropane) dihydrochloride) peroxyl radicals were selected as representative free radicals of lipid peroxidation to investigate the effects of oxidative modifications on isolated porcine myofibrillar protein structures as well as their rheological and gelling properties. Incubation of myofibrillar protein with increasing concentrations of AAPH resulted in a gradual increase (p < 0.05) in carbonyl content and SH → S–S conversion. Results from SDS-PAGE indicated that medium (~ 1 mM) and relatively high (> 3 mM) concentrations of AAPH induced aggregation of myosin and denaturation of myosin, troponin and tropomyosin, respectively. These structural changes resulted in changes on gelation of myofibrillar protein. Low level protein oxidation (AAPH ≤ 0.5 mM) had no remarkable effect (p > 0.05) on the viscoelastic pattern of myofibrillar protein gelation. Moderate oxidative modification (AAPH ~ 1 mM) enhanced the water-holding capacity (WHC) and texture properties of gels, while further oxidation (AAPH > 3 mM) significantly reduced the gel quality.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , ,