Article ID Journal Published Year Pages File Type
4362846 Food Microbiology 2015 7 Pages PDF
Abstract
We aimed to document the risk of Aeromonas spp. in marine shrimp species cultured in inland low salinity ponds in Thailand. In 14 of 18 shrimp samples retrieved from inland grow-up ponds, Aeromonas spp. were detected at ranges from 4667 to 1,500,000 CFU/g body weight. The phylogenetic tree constructed with the gyrB and cpn60 concatenated sequences indicated that the 87 isolates consisted of Aeromonas veronii (70%), Aeromonas aquariorum (18%), Aeromonas caviae (7%), Aeromonas jandaei (2%), and Aeromonas schubertii (2%). The potential virulence of the isolates was examined by phenotypic and PCR assays. Hemolytic activity and the extracellular activity of lipase, DNase, and gelatinase were observed in most isolates (94-99%). PCR revealed the presence of 9 genes related to virulence in the 87 isolates: act (75%), aer (74%), alt (30%), ast (1%), ascV (34%), aexT (24%), fla (92%), ela (34%), and lip (24%). The susceptibility profiles to 14 antimicrobial agents of isolates were typical for the genus, but resistance to cefotaxime, a third-generation cephalosporin, and imipenem were found in two A. aquariorum and in three A. veronii isolates, respectively. These resistances were confirmed by determining minimum inhibitory concentrations. Our results indicate that the microbiological risk posed by Aeromonas should be considered for marine shrimp species that are cultured in low-salinity ponds. These shrimps may also be a vehicle for the transfer of different genotypes of Aeromonas and antibiotic-resistant determinants to regions worldwide through trade.
Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , ,