Article ID Journal Published Year Pages File Type
4362901 Food Microbiology 2014 8 Pages PDF
Abstract

•We developed 8 microsatellite markers for Brettanomyces bruxellensis, a spoilage wine yeast.•Microsatellite typing shows that B. bruxellensis is a highly disseminated species.•Recent and older B. bruxellensis isolates from two Bordeaux wineries were genotyped.•B. bruxellensis strains within a cellar are strongly related at the genetic level.•Our results suggest that a clonal population may cause spoilage over decades.

Although many yeasts are useful for food production and beverage, some species may cause spoilage with important economic loss. This is the case of Dekkera/Brettanomyces bruxellensis, a contaminant species that is mainly associated with fermented beverages (wine, beer, cider and traditional drinks). To better control Brettanomyces spoilage, rapid and reliable genotyping methods are necessary to determine the origins of the spoilage, to assess the effectiveness of preventive treatments and to develop new control strategies.Despite several previously published typing methods, ranging from classical molecular methods (RAPD, AFLP, REA-PFGE, mtDNA restriction analysis) to more engineered technologies (infrared spectroscopy), there is still a lack of a rapid, reliable and universal genotyping approach. In this work, we developed eight polymorphic microsatellites markers for the Brettanomyces/Dekkera bruxellensis species. Microsatellite typing was applied to the genetic analysis of wine and beer isolates from Europe, Australia and South Africa. Our results suggest that B. bruxellensis is a highly disseminated species, with some strains isolated from different continents being closely related at the genetic level. We also focused on strains isolated from two Bordeaux wineries on different substrates (grapes, red wines) and for different vintages (over half a century). We showed that all B. bruxellensis strains within a cellar are strongly related at the genetic level, suggesting that one clonal population may cause spoilage over decades. The microsatellite tool now paves the way for future population genetics research of the B. bruxellensis species.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , , , , ,