Article ID Journal Published Year Pages File Type
4369278 International Journal of Food Microbiology 2008 10 Pages PDF
Abstract

Microbial risk assessment provides a means of estimating consumer risks associated with food products. The methods can also be applied at the plant level. In this study results of microbiological analyses were used to develop a robust single plant level risk assessment. Furthermore, the prevalence and numbers of Listeria monocytogenes in marinated broiler legs in Finland were estimated. These estimates were based on information on the prevalence, numbers and genotypes of L. monocytogenes in 186 marinated broiler legs from 41 retail stores. The products were from three main Finnish producers, which produce 90% of all marinated broiler legs sold in Finland. The prevalence and numbers of L. monocytogenes were estimated by Monte Carlo simulation using WinBUGS®, but the model is applicable to any software featuring standard probability distributions. The estimated mean annual number of L. monocytogenes-positive broiler legs sold in Finland was 7.2 × 106 with a 95% credible interval (CI) 6.7 × 106–7.7 × 106. That would be 34% ± 1% of the marinated broiler legs sold in Finland. The mean number of L. monocytogenes in marinated broiler legs estimated at the sell-by-date was 2 CFU/g, with a 95% CI of 0–14 CFU/g. Producer-specific L. monocytogenes strains were recovered from the products throughout the year, which emphasizes the importance of characterizing the isolates and identifying strains that may cause problems as part of risk assessment studies. As the levels of L. monocytogenes were low, the risk of acquiring listeriosis from these products proved to be insignificant. Consequently there was no need for a thorough national level risk assessment. However, an approach using worst-case and average point estimates was applied to produce an example of single producer level risk assessment based on limited data. This assessment also indicated that the risk from these products was low. The risk-based approach presented in this work can provide estimation of public health risk on which control measures at the plant level can be based.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , , , , ,